The effect of the development of the experimental design skills on the students’ attitude

Zoltán Tóth, Luca Szalay, Edina Kiss

University of Debrecen, Faculty of Science and Technology, Institute of Chemistry, Egyetem tér 1., H-4032 Debrecen, Hungary, tothzoltandr@gmail.com
Eötvös Loránd University, Budapest, Faculty of Science, Institute of Chemistry, Pázmány Péter setány 1/A, H-1117 Budapest, Hungary

Our approach for development of the experimental design skills: modifying ‘step-by-step’ instructions to practical activities requiring one or more steps of the experiments to be designed by the students.

The aims of the 4-year longitudinal study:
Is there any significant change in students’
- disciplinary content knowledge,
- experimental design skills,
- attitudes (AQ) and
- school performance (SP)
depending on the type of instructions?

Activities of the 3 groups of students:
- Group 1 (‘control’): follow ‘step-by-step’ recipes when doing the experiments (Type 1)
- Group 2: follow the same ‘step-by-step’ and principle of experimental design explained after the experiments (Type 2)
- Group 3: doing the same student experiments as Group 1 and Group 2, but design one or more experiments before doing them (Type 3).

Statistical methods:
- ANOVA,
- calculating Cohen’s d (an effect size to indicate the standardised difference between two means)\(^\text{5}\)

RESULTS

AQ1: How much do you like science/chemistry? (0-4 Likert scale)

- Positive effect in Grade 7 for both experimental groups
- Negative effect in Grade 8 for both experimental groups
- No significant change in Grade 9

AQ2: How important is it to use scientific experiments to support our ideas? (0-4 Likert scale)

- Positive effect in Grade 7 for both experimental groups
- Negative effect in Grade 8 for both experimental groups
- Small increase in Grade 9 for both experimental groups

AQ3: Preference of ‘step-by-step’ experiments to self-designed experiments (0-4 Likert scale)

- Small ‘negative’ effect in Grade 8 for Group 3
- No significant change in Grade 9

SP: Mark in science/chemistry (1-5 scale)

- Decrease in mark for Group 2
- Increase in mark for Group 3

Conclusions:
- Students of both experimental groups have positive change in attitudes to chemistry and the importance of experiments than that of students of the control group in Grade 7. However these positive attitudes decreases strongly in Grade 8.
- In Grade 7 the preference of ‘step-by-step’ experiments is higher in case of Group 3 than Group 1 or 2, but in Grades 8 and 9 there is no significant difference between the groups.
- It seems that experimental design has positive effect on the mark of the students.